Second-order Two-scale Analysis Method for Dynamic Thermo-mechanical Problems in Periodic Structure

نویسندگان

  • ZIHAO YANG
  • JUNZHI CUI
  • YATAO WU
  • ZIQIANG WANG
  • JIANJUN WAN
چکیده

In this paper, we develop the second-order two-scale (SOTS) analysis method and numerical algorithm for dynamic thermo-mechanical problems of composite materials with 3-D periodic configuration. In the problem considered, there exists a mutual interaction between the displacement and temperature fields. By the asymptotic expansion of temperature and displacement fields, the cell problems, effective thermal and mechanical parameters, homogenized equations and SOTS formulas of temperatures and displacements are obtained. The numerical algorithm based on the SOTS method is given. Finally, some numerical examples are shown. The numerical results show that the SOTS method is feasible and valid to predict the dynamic thermo-mechanical behaviors of periodic composite materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear Thermo-mechanical Bending Behavior of Thin and Moderately Thick Functionally Graded Sector Plates Using Dynamic Relaxation Method

In this study, nonlinear bending of solid and annular functionally graded (FG) sector plates subjected to transverse mechanical loading and thermal gradient along the thickness direction is investigated. Material properties are varied continuously along the plate thickness according to power-law distribution of the volume fraction of the constituents. According to von-Karman relation for large ...

متن کامل

Thermo-elastic behavior of a thick-walled composite cylinder reinforced with functionally graded SWCNTs

In this article, thermo-elastic-behavior of a thick-walled cylinder made from a polystyrene nanocomposite reinforced with functionally graded (FG) single-walled carbon nanotubes (SWCNTs) was carried out in radial direction while subjected to a steady state thermal field. The SWCNTs were assumed aligned, straight with infinite length and a uniform layout. Two types of variations in the volume fr...

متن کامل

Thermo-mechanical nonlinear vibration analysis of fluid-conveying structures subjected to different boundary conditions using Galerkin-Newton-Harmonic balancing method

The development of mathematical models for describing the dynamic behaviours of fluid conveying pipes, micro-pipes and nanotubes under the influence of some thermo-mechanical parameters results into nonlinear equations that are very difficult to solve analytically. In cases where the exact analytical solutions are presented either in implicit or explicit forms, high skills and rigorous mathemat...

متن کامل

A New Compromise Decision-making Model based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty

This paper proposes a compromise model, based on a new method, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. In this compromise programming method, two concepts are considered simultaneously. First of them is that the optimal ...

متن کامل

Thermo-mechanical high-cycle fatigue analysis of exhaust manifold of turbocharged engine with two-way coupling FSI

NNowadays, car manufactures in order to increasing torque and power with consider to fuel consumption, have swept to production of turbocharged engines. With consider to exhaust gas-temperature rises in boosted engines, recognition of critical locations of exhaust manifold in the worse condition of engine (full load and maximum speed), to prevent fracture of exhaust manifold is very important. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014